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Abstract.
Background: Mounting evidence shows that the neuropathological burdens manifest preference in affecting brain regions
during the dynamic progression of Alzheimer’s disease (AD). Since the distinct brain regions are physically wired by white
matter fibers, it is reasonable to hypothesize the differential spreading pattern of neuropathological burdens may underlie the
wiring topology, which can be characterized using neuroimaging and network science technologies.
Objective: To study the dynamic spreading patterns of neuropathological events in AD.
Methods: We first examine whether hub nodes with high connectivity in the brain network (assemble of white matter
wirings) are susceptible to a higher level of pathological burdens than other regions that are less involved in the process of
information exchange in the network. Moreover, we propose a novel linear mixed-effect model to characterize the multi-
factorial spreading process of neuropathological burdens from hub nodes to non-hub nodes, where age, sex, and APOE4
indicators are considered as confounders. We apply our statistical model to the longitudinal neuroimaging data of amyloid-PET
and tau-PET, respectively.
Results: Our meta-data analysis results show that 1) AD differentially affects hub nodes with a significantly higher level of
pathology, and 2) the longitudinal increase of neuropathological burdens on non-hub nodes is strongly correlated with the
connectome distance to hub nodes rather than the spatial proximity.
Conclusion: The spreading pathway of AD neuropathological burdens might start from hub regions and propagate through
the white matter fibers in a prion-like manner.
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INTRODUCTION

Alzheimer’s disease (AD) is a common neu-
rodegenerative disease with long progression and
multi-domain symptoms [1]. Since the brain alter-
ations start much earlier than the onset of clinical
symptoms, the availability of reliable biomarkers is
critical to achieving an early diagnosis of AD in
the preclinical stage. In the AD research framework,
major biomarkers include amyloid plaque, neurofib-
rillary tangle, and neurodegeneration [2–4]. With
the rapid development of neuroimaging techniques,
we can quantify AD biomarker levels in vivo for
the whole brain using positron emission tomography
(PET) imaging. Considerable efforts on the spatial
pattern of imaging biomarkers have contributed to
understanding the pathophysiological mechanism of
AD. However, the focus of research interest has
shifted to study the spreading pathways of neu-
ropathological burdens throughout the brain.

The human brain is a complex system where multi-
ple brain regions are inter-connected and thus form a
self-organized brain network. In the view of brain
anatomy, the distinct brain regions are physically
wired by white matter fibers. Multiple lines of AD
investigations have demonstrated the evidence of
selective vulnerability from the micro-scale nervous
system to the macro-scale brain network [5–9]. For
instance, subpopulations of neurons in different brain
areas have been found susceptible to specific environ-
mental or pathological injuries that may lead to cell
dysfunction or neuron death [8]. Several longitudinal
studies further confirm that the disease progression
follows vulnerable fiber pathways rather than spa-
tial proximity [10–12]. Since the human brain can
be divided into different regions according to cellu-
lar systems that contain functionally similar neurons,
neural activities can be characterized in a network
representation that consists of nodes (brain regions)
and edges (their interactions). Hence, selective vul-
nerability has also been reported in many network
analysis studies [13–19]. Specifically, the brain net-
work is a complex system, and several recent studies
show that multiple neuropathological factors resid-
ing on the system are also interacted and progressed
following the connectome pathways [20–23].

In this work, we focus on the selectivity of spread-
ing pathways, with particular attention to the role
of network structure in distributing the neuropatho-
logical burdens. In the network neuroscience area,
there is a wide consensus that the human brain net-
work bears the small-world property [24]. In this

regard, it is common to find a small set of hub nodes
that have a much higher degree of connectivity than
other nodes, indicating a hierarchical system of infor-
mation processing. Considering the significance of
hub nodes in information exchange, it is worthwhile
to examine whether hub nodes accumulate a higher
level of pathology than non-hub nodes. Validating
this hypothesis will allow us to further characterize
the propagation of neuropathological events from hub
to non-hub nodes and unravel the multivariate factors
behind the spreading patterns. To do so, we propose a
linear mixed-effect model to investigate whether the
propagation of neuropathological burdens follows the
connectome path in the brain network.

We will apply the above statistical analysis to
the large-scale longitudinal neuroimaging dataset
from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database. Following the biomarker
framework of AD, we examine the hypotheses of
network selectivity and network-based propagation
using amyloid-PET (A-biomarker), tau-PET (T-bio-
marker), and FDG-PET (N-biomarker), where each
modality has multiple follow-up scans from an
individual subject. Our analysis shows that A-T-N
biomarkers manifest selective patterns, although the
spatial distributions vary across biomarkers (modal-
ities). Furthermore, we find converging evidence
that the distribution of neuropathological burdens is
highly related to the connectome path for all biomark-
ers, which is aligned with the current neuroscience
findings that pathological proteins spread in a prion-
like manner.

MATERIALS AND METHODS

Participants

Here, after image quality control, 1,439 subjects
with longitudinal neuroimaging data are selected
from the ADNI dataset, where includes the following
multiple scans: T1-weighted MRI, DWI, amyloid-
PET, tau-PET, and FDG-PET. Based on the diagnosis
label, we partition the whole population into the fol-
lowing groups of normal control (NC), mild cognitive
impairment (MCI), and AD. Note that not all partic-
ipants have complete data for all the five modalities,
where the detailed demographic information is listed
in Table 1.

Data processing

For each subject, the multi-modal PET images are
aligned to the space of T1-weighted MR image at
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Table 1
Demographic information

NC MCI AD Total

Amyloid-PET Scan number 434 329 430 1,193
Age (y) 73.1 ± 6.1 71.6 ± 7.4 73.4 ± 7.8 72.8 ± 7.1
Gender (M/F) 196/238 184/145 250/180 630/563
Education (y) 16.7 ± 2.6 16.1 ± 2.7 16.0 ± 2.7 16.3 ± 2.7

Tau-PET Scan number 302 113 110 525
Age (y) 71.3 ± 5.9 70.7 ± 7.2 72.0 ± 7.9 71.3 ± 6.7
Gender (M/F) 124/178 69/44 62/48 255/270
Education (y) 16.9 ± 2.3 16.3 ± 2.8 15.7 ± 2.6 16.5 ± 2.5

FDG-PET Scan number 446 331 662 1,439
Age (y) 73.8 ± 5.9 71.4 ± 7.4 74.0 ± 7.7 73.3 ± 7.2
Gender (M/F) 215/231 183/148 396/266 794/645
Education (y) 16.4 ± 2.7 16.0 ± 2.7 15.8 ± 2.9 16.0 ± 2.8

the baseline. After the spatial alignment, we applied
the following processing steps to obtain the region
parcellations from the MR image using FreeSurfer
[25]: 1) skull stripping; 2) tissue segmentation; 3)
constructing of cortical surface based on the seg-
mentation results; 4) parcellation of the cortical
surface, where parcellation of the cortical surface
into 148 brain regions based on the Destrieux atlas
[26]. According to parcellation results, we applied
surface seed based probabilistic fiber tractography
between pairwise brain regions, and then produced
a 148×148 anatomical connectivity matrix [26].
Brain networks commonly consist of many periph-
eral regions and a few central ones, i.e., hubs, that
play a critical role in organizing and exchanging
hierarchical information. At each node, we calculate
the network nodal measurements, such as within-
module degree z-score, page-rank, and betweenness
centrality, to characterize the network topologies
using MATLAB-based brain connectivity toolbox
(https://sites.google.com/site/bctnet/). In this work,
we apply the composite score of betweenness and
nodal degree [27] to select hub nodes, where these
two metrics are equal to contribute to the composite
score. Specifically, we first calculate the centralities
of betweenness and nodal degree for each node. Then,
normalize these two metrics to the range of 0 to 1.
Lastly, ten nodes with the highest composite score
are designated as hub nodes. In Fig. 1, we show
the screening metrics (betweenness (left) and degree
(right)) used to select hub nodes.

After the amyloid-PET, tau-PET, and FDG-PET
images are aligned with the corresponding MRI
images, it is a common practice to calculate their
SUVR (standard uptake value ratio) for each brain
region by using the following steps: 1) parcellate the
PET image into 148 regions according to the region
parcellation results of MRI; 2) calculate the SUV for

each brain region by applying a bootstrapping strat-
egy, where we randomly sample a number of voxels
from each brain region and then select the top-ranked
voxels as the candidates to calculate their mean SUV;
3) repeat step (2) 10000 times and average them as
the final SUV level for each brain region; 4) calcu-
late the SUV for the cerebellum region by applying
the bootstrapping method used in steps (2) and (3); 5)
calculate the SUVR for each brain region by using the
ratio of SUV at each brain region between the SUV
at cerebellum region. Figure 2 shows the population-
average spatial mapping of whole-brain SUVR for
amyloid-, tau-, and FDG-PET (from top to bottom)
in NC, MCI, and AD groups (from left to right).

Statistical analysis

To fully test the hypothesis that hub nodes are prone
to accumulate a higher level of pathology than the
non-hub nodes in the brain network, two different
methods are used to exploit different data latent infor-
mation. One is the linear regression method, while
the other is the distribution induction method of large
sample data.

In the field of AD pathology research, Amyloid-
PET (A), Tau-PET (T), and FDG-PET (N) belong to
the ATN framework proposed by the 2018 National
Institute on Aging-Alzheimer’s Association (NIA-
AA) [2]. They are three kinds of typical biomarkers
widely recognized and applied [28]. Graph-theoretic
measures are widely used in the analysis of brain net-
work characteristics, such as the recognition of hub
nodes of the brain network. The above knowledge is
then used as a framework to separately combine the
three centrality measures at each node in the brain
network and the distribution characteristics of the
three kinds of biomarkers in the corresponding brain
region to test the rationality of the above-mentioned

https://sites.google.com/site/bctnet/
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Fig. 1. Population distribution graph of betweenness and degree centrality at each node. The top 30 of 148 nodes are displayed in order from
high to low according to the centrality measure. ‘R’ and ‘L’ in front of the nodal name indicate the left and right hemispheres, respectively.
The selected hub nodes are highlighted in red, which include G front sup (Superior frontal gyrus), G parietal sup (Superior parietal lobule),
G precuneus (Precuneus gyrus), S pericallosal (Pericallosal sulcus), and S temporal sup (Superior temporal sulcus).

hypothesis. As shown in Fig. 3, the first method
regresses the neurodegeneration level at each node
(measured by the SUVR level of the above three
kinds of AD biomarkers) along with the correspond-
ing network metrics such as within-module degree
z-score, PageRank, and nodal betweenness central-
ity [27]. Specifically, within-module degree z-score
and PageRank both reflect the local topological prop-
erty of the brain network, while nodal betweenness
reflects the global topological property of the brain
network. Different graph-theoretic metrics of brain
networks help reflect different underlying mecha-
nisms of pathological propagation.

In the second method, to more directly access the
contrasting aggressiveness of AD towards different
brain regions, brain nodes are first divided into two
groups: hub nodes or non-hub nodes [29], in which
hub nodes are generally highly connected [30] and
are associated with brain regions that have important

roles in cognitive and executive functions. The hub
nodes of brain networks are identified by applying
a commonly used consensus classification method,
which incorporates several graph-theoretic metrics
[29]. To reveal the progressive effect of AD pathol-
ogy on brain network topology properties, subjects
are divided into NC, MCI cohort, and AD cohorts
according to individual’s disease status, as shown in
Table 1. The SUVR levels of three AD biomarkers
(amyloid-�, tau, or FDG) are then computed for hub
and non-hub nodes, as well as the corresponding stan-
dard deviations in each cohort. Figure 4 illustrates the
scatter characteristics of SUVR levels at hub and non-
hub nodes for each cohort. A t-test is performed to
demonstrate the significance of cohort differences.

Although a large amount of data are collected and
studied in this work, it remains a very small pro-
portion in comparison to the total AD population.
To verify the rationality of the above results and to
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Fig. 2. Regional SUVR level of amyloid, tau, and FDG. On the
first two rows of the image, as the disease becomes more severe
(NC→MCI→AD), the mean level of amyloid and tau in the cor-
responding brain areas shows an overall upward trend. The result
for FDG in the last row is exactly opposite that of the first two
biomarkers, which is in line with existing research.

eliminate as much random interference as possible,
the bootstrap method is utilized to generate samples
for each cohort. Figure 5 plots the density graph of
average SUVR levels using bootstrap samples at hub
and non-hub nodes.

Linear mixed-effect model

To test the hypothesis that the propagation of
neuropathological burdens follows the connectome
path in the brain network, we propose the following
linear mixed-effect model to examine whether the dif-
ferences of neurodegeneration burden between hub
nodes and non-hub nodes are strongly related to their
topological distance or their spatial distance.

First, define the model variables and parame-
ters. Assume that the brain network contains a
total of N nodes, of which H are hub nodes (re-
presented as V = {vh |h = 1, . . . , H }), and the
remaining M are non-hub nodes (represented as U =
{um |m = 1, . . . , M }). The neurodegeneration in
AD can be characterized by the accumulation of
pathological proteins across various brain regions.
Investigating the potential relationship between
SUVR levels of pathological proteins at non-hub
nodes and hub nodes, we are able to characterize the

propagation mechanism of AD. Specifically, the dif-
ference between SUVR on hub node vh measured at
the baseline and the counterpart non-hub node um at
the jth follow-up scan is denoted by �sij,m→h. We use

di
mh to characterize the distance between hub node vh

and non-hub node um . Specifically, we calculate net-
work topological distance (e.g., the shortest distance
in the graph) and spatial distance (e.g., Euclidean dis-
tance between the centers of two underlying brain
regions) respectively, to test the hypothesis whether
the spreading of pathological burden follows the con-
nectome pathway in a prion-like manner or diffuse
along with the spatial neighborhood. Since it is rea-
sonable to assume that the brain structure does not
change significantly in the disease progression, we
only model the distance term di

mh at the baseline for
each subject i and assume di

mh is fixed in our longitu-
dinal model. Considering the effect of demographic
and genetic factors on AD progression, we include
in the model the subject-specific APOE4 biomarker
xApoE4 (1: carrier and 0: non-carrier), age xAge (in
years), education level xEdu (in years), and gender
xGen (1: male and 0: female). Since subjects in this
study constitute a subset randomly sampled from a
large-scale AD population, we add the individual ran-
dom effect of the ith subject, denoted by bi. Thus, the
linear mixed-effect model is constructed as follows:

�sij,m→h = β0 + β1d
i
mh + β2x

i
ApoE4 + β3x

i
Age

+ β4x
i
Edu + β5x

i
Gen + β6�tij + bi+εi

j,

(1)
where �tij is the time gap between the jth follow-

up scan and the baseline in ith subject. Our
mix-effect model in Eq. (1) assumes that the indi-
vidual random effect follows a Gaussian distribution,
i.e., bi∼N

(
μi, δσ2

i

)
. The restricted maximum-

likelihood (REML) estimation is used to estimate the
fixed-effects parameters {β1, . . . , β6}, and their sig-
nificance is assessed using the t-test. Furthermore,
we use the False Discovery Rate (FDR) approach to
create the adjusted p-values (i.e., q-values).

We apply our mixed-effect model to A, T, and
N biomarkers separately. In each model, we model
the network topology distance and spatial distance
one by one. After comprehensively analyzing the
obtained model parameters along with the corre-
sponding p-values, the above-mentioned hypothesis
can be tested, providing insight into the pathological
propagation pattern of AD-related neurodegenera-
tion. When applying the model to different hub nodes
separately, if significant �1 (differs from 0) occurs
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Fig. 3. Graph-theoretic metrics versus pathological damage (amyloid-�, tau, or FDG) SUVR level at each node of brain network. In each row,
the three subfigures in left-to-right order describe the results of the three centrality measures, Degree Z-score, PageRank, and Betweenness.
Across the first two rows of the graph, the greater the centrality measure of nodes (i.e., the stronger the hub attribute of nodes), and the higher
the amyloid or tau level at the corresponding nodes will tend to be. FDG appears opposite to the first two biomarkers in the last row.

more frequently in network topological distance than
spatial distance, we can infer that AD pathology is
more likely to propagate from hub to non-hub nodes
in a trans-neuron manner, mainly through the connec-
tome pathway rather than spatially adjacent tissue.

RESULTS

Network vulnerability under the collection of
A-T-N biomarkers

The central hypothesis of our work is to examine
whether the AD-related pathological events affect the
hub nodes and non-hub nodes differentially in the
brain. Since the hub nodes are located at the crit-
ical area of the brain network, these nodes can be

distinguished via the higher degree of topological
measurements such as within-module degree z-score,
PageRank, and betweenness [27]. In this context,
we first evaluate the correlation between such net-
work measurements and the A-T-N biomarker levels.
As shown in Fig. 3, we display the linear correla-
tion result between each biomarker (row-wise) and
network measurement (column-wise). It is appar-
ent that 1) the correlation is strong as indicated by
the small p-values and robust as indicated by the
large R-squared value, 2) the correlation is aligned
with the current neuroscience findings of the patho-
physiological mechanism of AD. Specifically, higher
pathological burdens (such as amyloid plaques and
neurofibrillary tangles) have higher chance to accu-
mulate the nodes with denser connectivity degrees.



W. Li et al. / Characterizing Network Selectiveness 1811

Fig. 4. Distribution of pathological damage in different cohorts. In subfigures a, b, and c, all the bold dots separately depict the average
SUVR level of AD biomarkers (amyloid-�, tau, or FDG) at hub (red) and non-hub (green) nodes of brain networks from all subjects in
each cohort, with the corresponding bars representing their standard deviation. In subfigures d, e, and f, the box plots show the average
distributions of AD biomarker SUVR level at hub nodes (in red) and non-hub nodes (in green) in each cohort.

As a result, greater neurodegeneration (reflected by
the lower metabolism level) occurs at the nodes with
a higher degree of within-module degree z-score,
PageRank, and betweenness (shown in the last row
of Fig. 3).

As pathological proteins spread in a trans-neuron
way, hub nodes (i.e., brain areas with more adja-
cent nodes and through which more shortest paths
circulate) are more likely to receive toxic proteins
from other nodes in the same brain network during
the pathological propagation. Following this clue, we
carry out the paired t-test between hub nodes and non-
hub nodes for each A-T-N biomarker. Specifically,
we first stratify the aging population into NC, MCI,
and AD groups. For each clinic group, we examine
whether the amyloid or tau pathology is at a sig-
nificantly higher level than the non-hub nodes. As
shown in Fig. 4, we find that 1) hub nodes (in red)

consistently collect a significantly higher amount
of A-T-N biomarker levels than non-hub nodes (in
green) at all stages of AD (indicated by the ‘∗’ at
the bottom of Fig. 4), 2) the increase of amyloid
and tau pathologies along the progression of AD
is significant (‘∗’ at the top of Fig. 4), and 3) sim-
ilarly the decrease of metabolism level (measured
by FDG-PET) is also significant from NC to MCI
and AD.

Moreover, we show the distribution of A-T-N
biomarkers (with average and medium value) on the
hub and non-hub nodes at the bottom of Fig. 4. Inter-
estingly, the difference of tau burden between the
hub and non-hub nodes is significant in NC and MCI
stages. However, such difference becomes vanished
as the disease progresses to AD, which implies that
the tau pathology might start from the hub nodes and
then spread all over the brain, leaving no significant
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Fig. 5. Density plots of pathological damage levels using bootstrap samples taken from NC, MCI, and AD cohorts. Based on bootstrap
samples, subfigures show posterior densities of mean amyloid-� SUVR levels (a,b,c), tau (d,e,f), and FDG (g,h,i). Purple and yellow colors
are used to describe the results of the hub and non-hub nodes, respectively.

differences between hub nodes and non-hub nodes at
the late stage of AD.

Bootstrap analysis of network vulnerability in AD

To make our analysis more robust, we apply the
bootstrap analysis using the resampling strategy. As
the density plot shown in Fig. 5, there is no overlap in
the estimated densities for the mean value of amyloid-
� and FDG SUVR levels between hub node and
non-hub node groups for all three cohorts, indicating
significant differences between the hub and non-hub
node groups for amyloid-� and FDG. Regarding the
average tau SUVR level, there is a small amount of
overlap in the estimated densities of the hub and non-
hub nodes for MCI and AD cohorts, whereas there
is almost no overlap in NC cohort. These findings

suggest that the difference in the amount of tau neu-
rofibrillary tangles between hub node and non-hub
node groups gradually diminishes when transiting
from NC to AD stage. In summary, the bootstrap
results shown in Fig. 5 are in full agreement with the
findings shown in Fig. 4, which provides strong sup-
port for the network vulnerability hypothesis that hub
nodes are prone to be affected by neuropathological
burdens than non-hub nodes.

The prion-like propagation pattern of AD
pathological proteins

We select 10 hub nodes (left and right symmet-
ric) out of in total 148 nodes. Figure 6 illustrates
the correlation between longitudinal changes of AD
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Fig. 6. SUVR level changes of pathological proteins (amyloid-� or tau) at non-hub nodes (�SUVRnon-hub) versus SUVR level changes of
pathological proteins at the hub node (�SUVRhub). The left half of the figure shows the relative results of the five hub nodes in the left
hemisphere, and the right half of the figure shows the relative results of the corresponding five hub nodes in the right hemisphere.

pathological proteins at the hub nodes and at non-hub
nodes, where the slopes of the linear regression lines
are greater than zero. The development of pathologi-
cal proteins at non-hub nodes is positively correlated
with development at the hub node. Intuitively, the
results in Fig. 6 implies that the accumulation of
pathological burden at the non-hub nodes is largely
correlated to the hub nodes to the extent that the
pathological proteins at non-hub nodes increase along
with the accumulation of pathological proteins at hub
nodes in the disease progression.

The propagation mechanism of AD-related
neuropathology

Since we find a strong correlation between the
occurrence of pathology burdens between the hub and
non-hub nodes, we go one step further to investigate
the propagation mechanism throughout the brain net-
works. Specifically, we examine whether the network
distance or spatial distance term shows a significant
effect in our mixed-effect model in Eq. (1), which
uses hub-to-non-hub distance to fit the longitudinal
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Fig. 7. Hub nodes in the brain. Red nodes indicate that the corresponding regression coefficients �1 in model (1) are significant to the data
associated with the hub node, while grey nodes indicate insignificant model coefficients. The first and second rows depict the results on
amyloid and tau, respectively. The left two subfigures (a) and (c) describe the results of the network topological distance, while the right two
subfigures describe the results of spatial distance.

change of A-T-N biomarkers. We find that it is more
likely that the spreading of amyloid and tau network
distance from the hub node to the non-hub nodes fol-
lows the wiring patterns of the brain network than
the spatial vicinity as much more hub nodes manifest
the propagation pattern of spreading to the connected
non-hub nodes via the connectome pathways (marked
as red dots in Fig. 7a, c) more frequently than using
spatial Euclidean distance (Fig. 7b, d).

The results in Fig. 7 are not consistent for amy-
loid and tau data, partially due to the amyloid and
tau might have different pathophysiological mech-
anisms as reported in a number of existing studies
[31, 32]. However, our mixed-effect model shows

another piece of evidence that the spreading of neu-
ropathological burdens is in a prion-like manner, that
is, one brain region passes on the neuropathologies
to the connected brain regions where the intense of
propagation depends on the connectivity strength.

DISCUSSION

In this paper, we apply a longitudinal statistical
analysis on the large-scale pathology neuroimages.
Our findings include 1) AD has a natural “preference”
for hub nodes in the brain network; 2) the patholog-
ical proteins of AD exhibit a prion-like transmission
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pattern; 3) AD is more likely to spread through net-
work topological connections as opposed to spatially
adjacent connections. As a pilot study, we further
examine the role of the non-modifiable genetic deter-
minants (such as APOE4) and modifiable lifestyle
factors (such as education) in the propagation of A-
T-N biomarkers. In our model, education, gender,
APOE4 status, and age are not found significantly
associated with the propagation of pathology bur-
dens (both amyloid and tau). Our future work includes
applying the model to meta-data analysis with larger
sample size.
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